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Correction

NEUROSCIENCE, PSYCHOLOGICAL AND COGNITIVE SCIENCES
Correction for “Functional evolution of new and expanded at-
tention networks in humans,” by Gaurav H. Patel, Danica Yang,
Emery C. Jamerson, Lawrence H. Snyder, Maurizio Corbetta, and
Vincent P. Ferrera, which appeared in issue 30, July 28, 2015, of
Proc Natl Acad Sci USA (112:9454–9459; first published July 13,
2015; 10.1073/pnas.1420395112).
The authors note that a number of the references in the man-

uscript and supporting information appeared incorrectly. On page
9455, left column, first full paragraph, line 11, “(17)” should in-
stead appear as “(15).”On page 9459, left column, first paragraph,
line 2, “(64)” should instead appear as “(58).” On page 1 of the
supporting information, left column, second full paragraph, line 8,
“(65)” should instead appear as “(59).” On the same page, right
column, first full paragraph, line 3, “(66)” should instead appear as
“(60).” On the same page, right column, second full paragraph,
line 5, “(67)” should instead appear as “(61).” In the same para-
graph, line 11, “(68)” should instead appear as “(62).” In the same
paragraph, line 15, “(69)” should instead appear as “(63).” On the
same page, right column, fourth full paragraph, line 7, “(70)”
should instead appear as “(64).” On page 2 of the SI, left column,
second full paragraph, line 17, “ref. 70” should instead appear as
“ref. 64.” On the same page, right column, first paragraph, line 5,
“(71)” should instead appear as “(65).” On the same page, right
column, first full paragraph, line 15, “(71)” should instead appear
as “(65).” On page 4 of the SI, left column, third full paragraph,
line 4, “(64)” should instead appear as “(58).”On page 7 of the SI,
in the legend for Fig. S2, line 2, “ref. 72” should instead appear as
“ref. 66.” The online version has been corrected.

www.pnas.org/cgi/doi/10.1073/pnas.1516559112
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Macaques are often used as a model system for invasive investigat-
ions of the neural substrates of cognition. However, 25 million years
of evolution separate humans and macaques from their last common
ancestor, and this has likely substantially impacted the function of the
cortical networks underlying cognitive processes, such as attention.
We examined the homology of frontoparietal networks underlying
attention by comparing functional MRI data from macaques and
humans performing the same visual search task. Although there are
broad similarities, we found fundamental differences between the
species. First, humans have more dorsal attention network areas than
macaques, indicating that in the course of evolution the human
attention system has expanded compared with macaques. Second,
potentially homologous areas in the dorsal attention network have
markedly different biases toward representing the contralateral
hemifield, indicating that the underlying neural architecture of these
areas may differ in the most basic of properties, such as receptive
field distribution. Third, despite clear evidence of the temporoparietal
junction node of the ventral attention network in humans as elicited
by this visual search task, we did not find functional evidence of a
temporoparietal junction in macaques. None of these differences
were the result of differences in training, experimental power, or
anatomical variability between the two species. The results of this
study indicate that macaque data should be applied to humanmodels
of cognition cautiously, and demonstrate how evolution may shape
cortical networks.

attention | human | monkey | fMRI | cortex

Selective attention operates in at least two functional modes:
stimulus-driven (bottom-up) control of attention and goal-

directed (top-down) (1). A recently proposed model by Corbetta
et al., based on human neuroimaging and stroke studies, divides
the control of attention between two cortical networks that un-
derlie these modes of attention: the dorsal attention network,
comprising the human frontal eye-fields (FEF) and intraparietal
sulcus (IPS), and the ventral attention network, centered around
an area at the temporoparietal junction (TPJ), located on the right
hemisphere caudal supramarginal gyrus (Brodmann area 40
or area PFG/PF) and posterior superior temporal gyrus (Brodmann
area 22) (2–4). This functionally defined ventral attention network
area is referred to as the TPJ by Corbetta et al. (2) and TPJa in
Mars et al. (5). Here, we refer to the functionally defined area as
the TPJ, and reserve “temporoparietal junction” for the anatom-
ical region in both species. According to this model, the dorsal
attention network is activated when the subject sustains attention
on a cued spatial location (6). The TPJ is activated only by the
presentation of a behaviorally relevant stimulus that captures at-
tention, with larger activations evoked by stimuli that are un-
expected or cause reorienting of attention, and is deactivated
when distracting stimuli are presented during sustained attention
(6, 7). The conjunction of deactivation during sustained attention
and activation during target detection functionally identifies the
TPJ in event-related paradigms (6). Damage to the TPJ decreases

the ability to detect and orient attention to novel stimuli presented,
especially in the left hemifield, a condition known as visuospatial
neglect (3). The dorsal and ventral attention networks interact with
each other and with the visual cortex (2). During top-down or goal-
directed control of attention, the dorsal attention network is acti-
vated, enhancing the selected stimulus in visual cortex, and the TPJ
is deactivated, suppressing the orienting of attention to potentially
distracting stimuli. However, when a behaviorally relevant stimulus is
presented, the TPJ is activated, causing attention to be focused on
this stimulus (2). However, these roles of the TPJ in the control of
attention remain open to debate, partly because little is known about
the TPJ’s connectivity or neuronal response properties.
The macaque has been used as a model for studying attention

using invasive techniques that complement neuroimaging. There
are established maps of cortico-cortical connectivity (8) and many
electrophysiological studies of how these areas interact (9). As with
all model systems, interspecies differences in these cortical systems
are likely to exist. For example, the dorsal attention networks are
assumed to be homologous between the two species, but basic facts,
such as the number of areas within the dorsal network in each
species, remain unknown. Furthermore, a ventral attention system
has been functionally characterized only in humans, and the un-
derlying architectonics and connections remain largely unknown.
The macaque model might be used to examine these features, but
in macaques the ventral attention system has not been functionally
isolated and an anatomical homolog is unclear. Areas PF/7b or
PFG seemmost likely to be anatomically homologous to the human
TPJ, but functionally these areas are more involved in polysensory
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integration and motor functions than in the control of attention
(4, 10, 11). A recent functional connectivity study (12) found an
area in the region of the macaque temporoparietal junction that
shares a similar pattern of connectivity and right hemisphere lat-
eralization with the human TPJ. However, this potential homolog
covers multiple areas—7a, temporal parietal occipital caudal, and
retroinsular—with no unifying function (13). However, another
recent study finds the homolog of a human area adjacent to the TPJ
involved in social cognition to be located in the mid-superior tem-
poral sulcus of the macaque, far from the expected location at the
macaque temporoparietal junction (14). Many details about the
anatomy and physiology of the ventral attention network in either
species remain unknown (3, 5).
To address the similarity of attention systems, we quantitatively

compared humans and macaques using functional MRI (fMRI).
We had both species attend to and search through a rapid serial
visual presentation (RSVP) stream of images to detect a pre-
viously memorized target image. The task was designed to sepa-
rate activation of visual areas and the dorsal attention network
from deactivations of the TPJ during search (which combines
sustained covert attention and visual processing of the RSVP
stimuli), and activation of the TPJ by target detection (Fig. S1A)
(2, 6). We used the same macaque data to report on topographic
organization in the lateral intraparietal (LIP) previously (15).

Results
Behavior. Behavior in humans and macaques was closely matched.
Fig. S1B shows that the range of detection rates in the eight human
subjects approximated that of the two macaques. Although a but-
ton-box malfunction made the recorded reaction times for the
humans in the MRI scanner unusable, the human reaction times
recorded in the behavioral set-up (human mean 0.541 s, SD =
0.036) were similar to the macaque reaction times (macaque Y
mean 0.539 s, SD = 0.062; macaque Z 0.484 s, SD = 0.048) (Fig.
S1C). Fixation breaks in the human subjects were relatively in-
frequent (0.247 fixation breaks per trial, SD = 0.170) and relatively
short (0.508 s per fixation break, SD = 0.080), and the average
fixation position in humans was similar to the macaques (Fig. S1D).

Topography of Activation Maps. Qualitatively, the patterns of acti-
vation in both species showed broadly similar patterns but several
clear differences. The two-stream trials in both species evoked
activations in the visual cortex as well as attention-related areas of
the parietal and frontal cortex. For each individual, we defined
cortical surface frontoparietal regions of interest (ROIs) as con-
tiguous activations that were consistent in most individual’s hemi-
spheres (P < 0.05 Bonferroni multiple comparisons correction).
These were then labeled by comparing locations to previous
functional and anatomical studies in each species (see SI Materials
and Methods for more details). This qualitative analysis revealed
activation patterns that were highly consistent within species but
markedly different between species (Fig. 1 and Figs. S2–S4). In the
parietal lobe of all four monkey hemispheres there was only one
focus of activity on the lateral bank of the IPS corresponding to the
anatomical location of area LIP (Fig. 1 A and C). One additional
focus of activity may have been present corresponding to area
dorsal prelunate, but was not consistent and may have been V2/3d
activity misprojected to the opposing sulcal bank. Similarly, Fig. 1C
demonstrates that the activity on the medial bank of the IPS in Fig.
1B represents misprojection from the lateral bank. In most of the
humans, however, two parietal foci were identified (Fig. 1B), one in
the ventral portion of the IPS (vIPS, 13 of 16 hemispheres) and one
in the posterior portion of the IPS (pIPS, 16 of 16 hemispheres). In
the macaque prefrontal cortex, two adjacent foci were consistently
identified in the four hemispheres: one on the anterior bank of the
arcuate sulcus corresponding to the anatomical location of the
FEF, and the other at the posterior end of the principal sulcus
(area 46). Fig. 1 A and C also demonstrate potential foci in the

inferior and posterior ramus of the arcuate sulcus, but neither of
these were consistently present in all four hemispheres and did not
match known oculomotor or attention areas in the macaque; these
foci were not considered further. In the human prefrontal cortex,
three foci were consistently identified (Fig. 1B): one at the junction
of the precentral and superior frontal sulcus corresponding ana-
tomically to what has been previously labeled as the FEF (14 of 16
hemispheres), one inferior to this location in the precentral sulcus
(iPCS, 14 of 16 hemispheres), and another in the anterior portion in
or near the inferior frontal sulcus (aIFS, 12 of 16 hemispheres).
These gross qualitative differences in the functional anatomy of the
dorsal attention network are reinforced by the quantitative mea-
surements of areal characteristics described below.

Contralateral Preference. For each subject, the foci from the two-
stream data described above were used to create ROIs, from which
were extracted time courses of blood-oxygen level-dependent
(BOLD) activity evoked by the 12-s RSVP stream presentation for
each of the six locations at 6.8° eccentricity. For each ROI, the
average magnitude of activation was calculated for the three con-
tralaterally and ipsilaterally presented streams over the peak acti-
vation period (3–12 s for the macaques and 6–15 s for the humans)
(Fig. 2A). The contralateral and ipsilateral magnitudes were then
used to calculate a contralaterality index [(contra − ipsi)/contra],
with values of 1 indicating no evoked ipsilateral activity and 0 in-
dicating equal contralateral- and ipsilateral-evoked activity (Fig.
2B). In both species, visual cortex ROIs [V1, V2/3v, V2/3d, V4,
middle temporal (MT)] had contralateral index values near 1, in-
dicating little or no ipsilateral-evoked activity in these areas. In
macaques, frontoparietal areas were also strongly lateralized, with
index values near 1 [repeated-measures ANOVA, hemisphere ×
ROI, ROI: F(7,7) = 1.57, P = 0.429]. However, in humans, the
contralateral bias of the frontoparietal areas was significantly de-
creased [repeated-measures ANOVA, hemisphere × ROI, ROI:
F(9,63) = 25.9, P < 10−15]. There was no significant effect of hemi-
sphere on the contralateral preference in humans [hemisphere:
F(1,7) = 0.15, P = 0.71].

min
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16/16

# ROIs
Overlap
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Fig. 1. (A) Areas activated by two-stream paradigm averaged across both
hemispheres for all subjects of each species. Human labels derived from
sulcal features, and macaque labels derived from ref. 13. Threshold set at
z > 10 for both species (P << 0.05 multiple comparisons corrected). Human
data on the Conte 69 right hemisphere cortical surface, and macaque data
on the macaque F6 right hemisphere surface. (B) Overlap of human areas
activated in the two-stream paradigm from all 16 hemispheres. Locations
with more overlap have lighter shades of color. (C) Two-stream activations
in both individual macaques, overlaid on their own epipolar plane image
(EPI) volumes and cortical surface models (P < 0.05 multiple comparisons
corrected). Blue lines on EPI volumes represent cortical surface outline.
Black lines on surfaces represent architectonic borders in ref. 13, in which,
area 8ac partially overlaps the functionally defined FEF, and area 46 is
subdivided into 46p and 46v.
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To determine whether the contralateral index differences in
the two species were a result of differences in training history,
three of the human subjects trained for an additional ∼19 h over
3–4 mo on the single-stream task, and were then scanned once
again while performing that task. Using the same ROIs as in the
pretraining session, contralateral index values were recalculated
from the posttraining scanning session (Fig. 2C). On average, the
contralateral index did not change significantly with training [re-
peated-measures ANOVA, pre/posttraining × hemisphere × ROI,
main effect of training: F(1,2) = 0.144, P = 0.741]. In fact, in 9 of 10
regions the average degree of contralateral preference decreased
with training.

Functional Localization of the TPJ. In humans, the TPJ node of the
ventral attention system was defined on the group average map on
the Conte 69 surface as voxels on or near the right hemisphere
supramarginal gyrus that were both significantly deactivated while
searching for targets and significantly activated by the detection of
targets (Fig. 3). This resulted in an ROI with similar shape and
location as defined in Shulman et al. (6); a comparison of Fig. 3
with Fig. S5 demonstrates the hemispheric asymmetry in the TPJ
seen in Shulman et al. and other studies (6, 7, 12). In macaques, the
same conjunction failed to reveal any similar ROI on or around the
inferior parietal lobule or superior temporal gyrus in either hemi-
sphere at the group level (Fig. 3A).
To verify that the group average human TPJ ROI reliably rep-

resented the TPJ in each individual, this ROI was projected to each
individual’s surface and used to extract time courses of BOLD ac-
tivity. These time courses revealed substantial deactivation evoked
by visual search and activation evoked by target detection in all
eight subjects (Fig. 4A). Because no similar ROI could be defined in
the macaques, the human surface ROI was projected to the ma-
caque atlas surface using the interspecies registration algorithm in
CARET (www.nitrc.org/projects/caret). The projected ROI over-
lapped with macaques areas 7op and PA in the Lewis and van
Essen atlas (13). This surface ROI was then used to extract BOLD
time courses of activity for visual search and detection using the
same procedure in macaques and humans. These time courses did
not reliably reveal either search deactivations or target activations in
any of the four macaque hemispheres, with the exception of one left
hemisphere deactivation; this is in contrast to finding search de-
activations and detection activations in all human subjects. In the
three subjects that underwent additional training and a posttraining
scan, the search deactivations and detection activations did not
change substantially after training (Fig. 4B). A recent study used
resting-state functional connectivity to isolate a potential macaque
TPJ homolog (12) (Fig. 3). BOLD time courses extracted from
the ROI revealed by this method, which overlaps considerably
with the projected human ROI, also show neither the search

activations nor detection activations that would be expected of a
macaque homolog of human TPJ (Fig. S6).

Discussion
We compared BOLD-fMRI responses of the attention and visual
systems of eight humans and two macaques using identical tasks,
and found three consistent differences between species. First, al-
though dorsal frontoparietal regions were activated in both species,
in monkeys there were fewer independent activation foci in both the
parietal and prefrontal cortex. Second, both species demonstrate
contralateral bias in visual and dorsal frontoparietal regions, but the
bias is much weaker in the human frontoparietal cortex. Finally, we
found no evidence of an area in macaques located in the tempor-
oparietal region having the functional properties of human TPJ (as
measured by our task), despite robust and consistent modulation of
activity of the TPJ in humans with the same task. All results were
highly consistent within species and highly divergent between spe-
cies. They likely do not reflect a verbalization strategy in humans, as
left hemisphere language areas were not activated (SI Discussion
and Fig. S2). The results also cannot be attributed to differences in
performance, training, or reward structure (Fig. S7), and therefore
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likely reflect species differences that have evolved in the 25 million
years since the most recent common ancestor (18).

Expansion of the Dorsal Attention System in Humans. These evolu-
tionary changes result in fundamental differences in the architec-
ture of the attention systems. Even in the dorsal attention system,
which is broadly similar in the two species, a property as basic as the
number of areas involved in a visual search task differs between
species. Although the macaque cortical sheet is about 10× smaller
in area than humans and about 1-mm thinner (19), the 8× finer
fMRI sampling resolution in macaques (1.5-mm isotropic) com-
pared with humans (3-mm isotropic) was sufficient to resolve foci
from adjacent cortical areas, which are typically several millimeters
in width and length (further discussed in SI Discussion). In addition,
despite individual variation, and even with the small number of
subjects, there was a remarkable degree of consistency within
species. The main conclusions of this study are consistent with
those of previous human imaging studies (20–23) and macaque
anatomy and electrophysiology (9, 13, 24).
Two previous oculomotor studies comparing macaques and hu-

mans using BOLD-fMRI also found more individual foci of activity
in humans than in macaques (25, 26). The sustained working
memory task in Kagan et al. (25) is comparable to our covert at-
tention and search task. That study, like ours, found a single parietal
focus of activation in macaques versus multiple foci in humans. The
macaque activation was in the anatomically and functionally de-
fined LIP (13, 27), whereas the human activations were along the
IPS on the superior parietal lobule (pIPS in our study) and in the
ventral IPS (vIPS in our study), in keeping with other studies (2).
The pIPS in our study has been previously labeled human LIP (20)
based on topographic organization, but recent studies in humans
and macaques have found that there may be more parietal areas
along the IPS in humans than macaques (23), and that topographic
organization in the macaque LIP may be more complex than pre-
viously thought (27), making it difficult to identify parietal area
homologies in the two species.
In the macaque frontal cortex, we, in agreement with both

Koyama et al. (26) and Kagan et al. (25), find two foci of ac-
tivity: one in the anterior bank of the arcuate sulcus, corre-
sponding to the FEF (28), and one in the posterior portion of
the principal sulcus, corresponding to posterior area 46 (29).
This finding is in contrast to the three foci of activity typically

observed in the human frontal cortex (21–23). The most ante-
rior of these three—the aIFS—is likely homologous to ma-
caque area 46 (29). It is unclear the degree to which the two
remaining foci of activity—which we labeled FEF and iPCS—
are homologous to the macaque FEF. Both Koyama et al. (26)
and Kagan et al. (25), along with multiple human fMRI studies
(23), have found that these two areas are activated in attention,
oculomotor, and spatial working memory tasks. However,
usually only the superior of these two areas is labeled as the
human FEF (2, 22, 23), despite this and other inconsistencies
between the two species (30). The functional differences be-
tween the human FEF and iPCS also remain unclear. Amiez
and Petrides described a premotor eye-field in humans ventral
to the area we have labeled the FEF, but iPCS in our study was
more inferior than their proposed premotor eye-fields, which in
our task were not consistently activated in macaques (31). Jerde
and Curtis recently found that the FEF (sPCS in their study)
exhibited more sustained activity than iPCS during oculomotor,
attention, and spatial working memory tasks (21); in the context
of our results, this finding suggests that the iPCS has evolved as
a prefrontal cortical area in humans, but is not present in ma-
caques. Although the expansion of the functionally defined
dorsal attention network in humans versus macaques will
require confirmation by comparative connectional anatomy stud-
ies, the findings appear to reflect the evolution of new or enhanced
attentional abilities—possibly as a result of different evolutionary
pressures—further evidence of which is discussed below.

Differences in Contralateral Preference Reflect Separate Evolution of
Human and Macaque Attention Systems. Differences in the con-
tralateral preference of the dorsal attention network provide
further evidence of divergent evolution. These results corrob-
orate previous human/macaque fMRI studies of the oculomo-
tor system (25, 26). In the present study we show that the
contralateral preference diverges between humans and ma-
caques as one ascends the visual hierarchy into the attention
system (22, 32). The divergence is most pronounced in those
regions that have most expanded in humans compared with
macaques over the course of evolution (33). These regions in-
clude the superior parietal and dorsolateral prefrontal cortex,
perhaps indicating that selective pressures on the two species
resulted in different organizational schemes (34).
The interspecies differences in contralateral preference may

reflect changes in the magnocellular pathway that have been
noted at multiple levels of visual processing (16). The evolution
of the magnocellular pathway may underlie changes in the
distribution and size of receptive fields (resulting from differ-
ences in lower-level visual input) and differences in the sharing
of information between dorsal frontoparietal areas and other
higher-level areas. Single-unit recording studies in the macaque
find that neurons in frontoparietal attention areas have large
receptive fields, and that ∼10–45% of cells have ipsilateral
receptive fields (28, 35–38) as well as summation of signals
from both hemifields (39, 40). In humans, both of these prop-
erties may have been extended. Studies of M (parasol) retinal
ganglion cell dendritic fields and perceptive field sizes (thought
to reflect M retinal ganglion cell receptive field sizes) have
found both to be larger in humans than macaques (16, 17).
Given that receptive field size tends to increase at each level of
visual processing (41), it is possible that receptive field sizes in the
frontoparietal cortex are also larger in humans versus macaques.
In humans the mechanisms for sharing signals between hemi-

spheres and hemifields may have been elaborated in the service of
brain lateralization (25), as well as improved flexibility in the use of
information from both hemispheres in the control of attention (32).
In macaques, selective pressures may have killed sharing of in-
formation between hemispheres in favor of faster processing (42).
Increased interhemisphere information sharing in humans may
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underlie the global precedence when processing complex stimuli
with both global and local features, whereas in monkeys local fea-
tures have precedence (16, 43). The global precedence suggests that
sharing of information between hemifields is automatic in humans.
The seeming contradiction between macaque single-unit

studies showing a significant proportion of cells with ipsilateral
fields and macaque BOLD-fMRI from this study and from
Kagan et al. (25), showing strong contralateral preferences,
may reflect an unequal distribution of receptive fields within
frontoparietal areas representing the contralateral and ipsilat-
eral hemifields. In the single-unit studies, many of the receptive
fields classified as ipsilateral tend to be along the vertical
meridian (37) (Fig. 3), meaning that most receptive field locations
are centered in the contralateral hemifield (but see ref. 44). In our
study the stimuli were located 4.8–6.8° away from the vertical
meridian and likely stimulated few ipsilateral receptive fields in
any of the frontoparietal areas. Studies using a combination of
single-unit recording and BOLD-fMRI (or LFP recording) in
these areas will be needed to better understand these differences.

TPJ: Uniquely Human? There is some debate about how the TPJ is
involved in the control of attention—whether it is involved in the
shifting of attention (45) or in the evaluation of “oddball” stimuli
(46)—but converging evidence from neglect studies implicate the
TPJ in some aspect of attentional control (2, 3). The functional
absence of the TPJ in macaques therefore represents a profound
interspecies difference in the control of attention. The RSVP
task used in this experiment robustly and consistently isolates the
TPJ node of the ventral attention network in humans (6), and so the
lack of analogous modulation in macaques is telling. The failure to
produce deactivation was not because of a lack of power; robust
deactivations were seen in the ventral motor cortex that were
similar to the human subjects. Nor was it because of a potential
difference in activity evoked by maintaining fixation; in humans the
TPJ deactivations depend on attention and working memory load
(47, 48) and it would be difficult to argue that the attention or
working memory loads in the fixation and visual search task in-
tervals were equivalent for macaques but not humans.
Additional support for this interspecies difference again comes

from the phenomenon of global precedence in humans, which ap-
pears to require the right TPJ (49). The functional absence of the
TPJ, combined with a dorsal attention system with smaller receptive
fields and less interhemispheric communication, may explain the lo-
cal precedence found in monkeys (16). These differences may be less
surprising given how much more cortical surface area is devoted to
the inferior parietal lobule at the junction of the parietal and tem-
poral lobes in humans versus macaques, even after correcting for
scale differences (33), but nevertheless indicate that the human at-
tention systems differ substantially from macaques, and that the
macaque model may be inadequate for some aspects of human vision
and attention. There is evidence, however, that although the current
task reveals species differences in the function of the temporoparietal
junction, the underlying circuitry may have similar connectivity. His-
tological studies indicate that areas at or near the temporoparietal
junction in macaques project to the ventro- and dorsolateral
prefrontal cortex (particularly areas 7a and PFG), just as func-
tional connectivity studies suggest that the human TPJ is con-
nected to regions of the dorsolateral prefrontal cortex (2, 4). This
temporoparietal-prefrontal cortex circuitry may be conserved in
the two species, but used for different purposes. With a single syn-
apse separating multimodal/associative temporoparietal cortex and
prefrontal cortex, this circuit architecture may underlie the fast
transfer of information from associative sensory areas to prefrontal
working memory/task control centers. In macaques, this fast circuit
could allow the animal to quickly navigate its arboreal environment
(42). Neurons in area 7a, which is on the inferior parietal lobule near
the temporoparietal junction and overlaps somewhat with the can-
didate homolog from Mantini et al. (12), play a role in the detection

of new onset high-contrast stimuli outside of the focus of attention
(50) as well as processing complex visual stimuli, such as optic flow
patterns (51) and maze navigation (52). In humans, the ventral at-
tention system also may be involved in navigating an environment of
complex social cues rather than physical objects (53). In addition to
their role in the control of attention, areas in or near the human TPJ
are involved in the processing of faces (54), gaze direction (55), and
in determining the intentions of others (56); these abilities are unique
or enhanced in humans compared with chimpanzees and other
nonhuman primates (53). Accordingly, the human TPJ is less sensi-
tive to the types of sudden-onset, high-contrast, task-irrelevant stimuli
that macaques may need to detect to escape predators or dodge
obstacles, and more sensitive to the behavioral relevance of a stim-
ulus (2), a characteristic that might be useful in social situations for
picking out subtle changes in visual features, like eye-gaze direction.
Differences in selective pressures may have caused this circuit to be
adapted for different purposes in the two species.

Conclusions
The results of this study demonstrate that a task that clearly and
consistently defines areas involved in attentional control in humans
evokes a starkly different pattern of activations and deactivations in
macaques. Given the similarity in task performance in the two
species, these differences cannot be easily dismissed as confounded
or artifactual. We have interpreted these findings in light of the
Corbetta/Shulman model (2), but the observation that the task
evokes patterns of activations and deactivations, both within and
outside of human attention areas that differ markedly from the
macaque, is independent of this model. These results suggest that
the human and macaque attention systems have evolved in the
service of the unique challenges facing each species, and in humans
this has meant an elaboration of the attention control system to
support new and unique functions that may underlie expanded
social cognition abilities.
Although enough similarities exist to support continued use of

macaques as a model system for humans, these fundamental dif-
ferences in function demonstrate a need for a cautious application
of findings from one species to the other (16). This study does not
rule out the possibility of homologies not revealed by the task used
here: other tasks may reveal shared functional features between
the temporoparietal junction and dorsal attention areas in the two
species. At a deeper level, these results demonstrate how differing
selective pressures may adapt existing neural architectures, such as
the TPJ, to perform novel functions. Understanding the evolu-
tionary origin of these circuits will better constrain investigations
of human cognitive systems, as well as provide insight into how
exactly humans differ from other primates.

Materials and Methods
Two macaques were used in accordance with the Washington University Animal
Studies Committee and the NIH Guide for the Care and Use of Laboratory An-
imals (57). Eight human subjects were recruited and provided written informed
consent in accordance with the New York State Psychiatric Institute Institutional
Review Board. Subjects of both species performed the same visual search task
while BOLD images were acquired in a 3T scanner, with 1.5-mm isotropic voxels
in the macaque and 3-mm isotropic voxels in the humans, both with a TR of
3,000 ms. The task required the subjects to maintain fixation while covertly
attending to a 12-s RSVP stream of colorful images of objects presented in the
periphery or at fixation in one location at a time, and to indicate with a hand
response when they had detected a previously memorized target. Eye-tracking
was used to ensure fixation, and both species were rewarded for fixation and
correct detection with small drops of liquid. The BOLD images were corrected for
motion and other artifacts through a series of automated image-processing
programs, and were then analyzed with a general linear model that separated
the sustained response to the RSVP stream from the transient response to target
detections. The resulting z-statistic maps were projected to 3D representations
of the subject’s own cortical surface and then to the species appropriate atlas
surface (CARET, www.nitrc.org/projects/caret/). Group averaging was performed
on the cortical surface to make group ROIs, and human ROIs were projected to
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the macaque atlas via the interspecies cortical surface deformation procedure
outlined in (58). For more details, please see SI Materials and Methods.
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